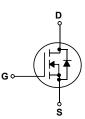


# SLB160N10G3 100V N -Channel MOSFET

#### **General Description**


This Power MOSFET is produced using Msemitek's advanced Shielding Gate MOSFET technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for low voltage applications such as DC/DC converters and high efficiency switching for power management in portable and battery operated products.

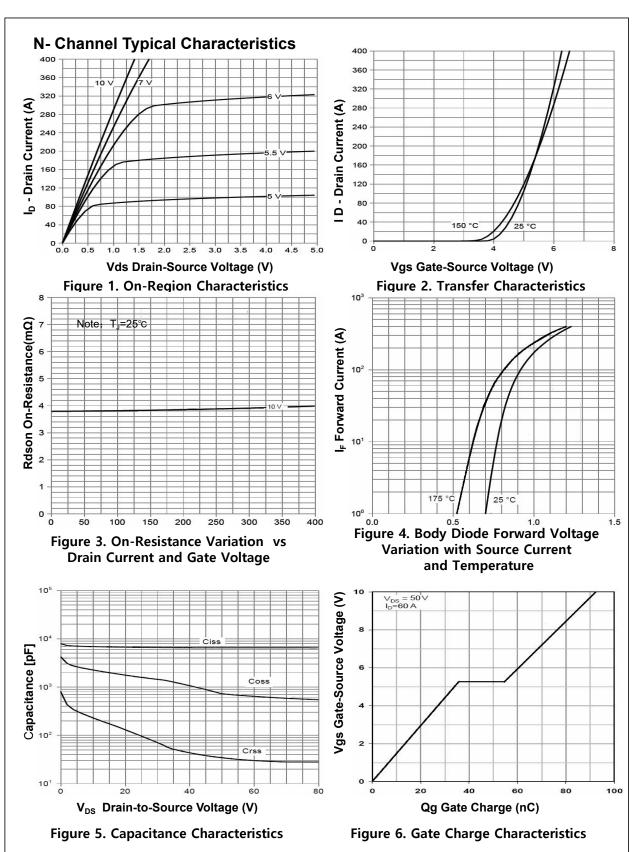
#### Features

- N-Channel:100V 160A
  - $R_{DS(on)Typ}$ = 3.7m $\Omega$ @V<sub>GS</sub> = 10 V
    - Very Low On-resistance RDS(ON)
- Low Crss
- Fast switching
- 100% avalanche tested
  Improved dv/dt capability

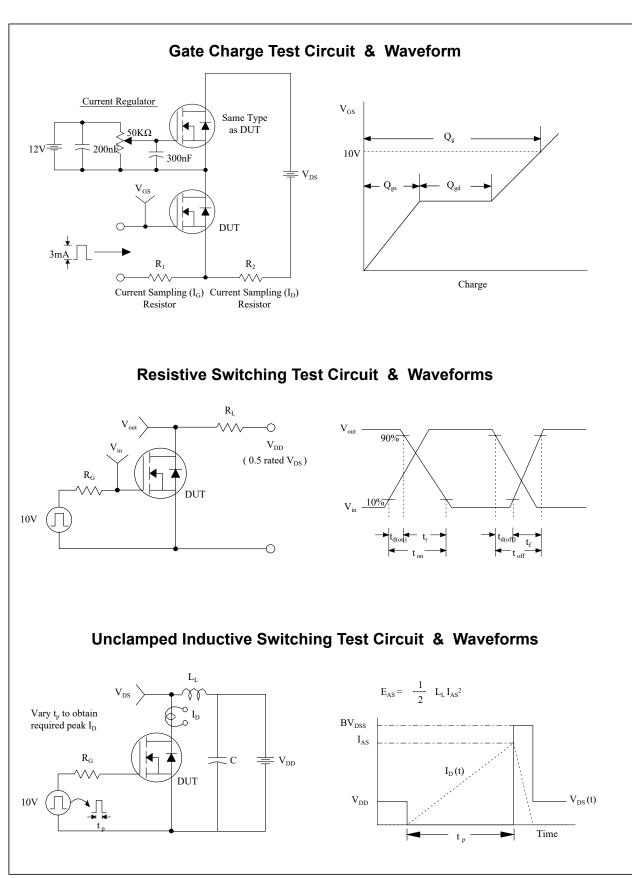
0

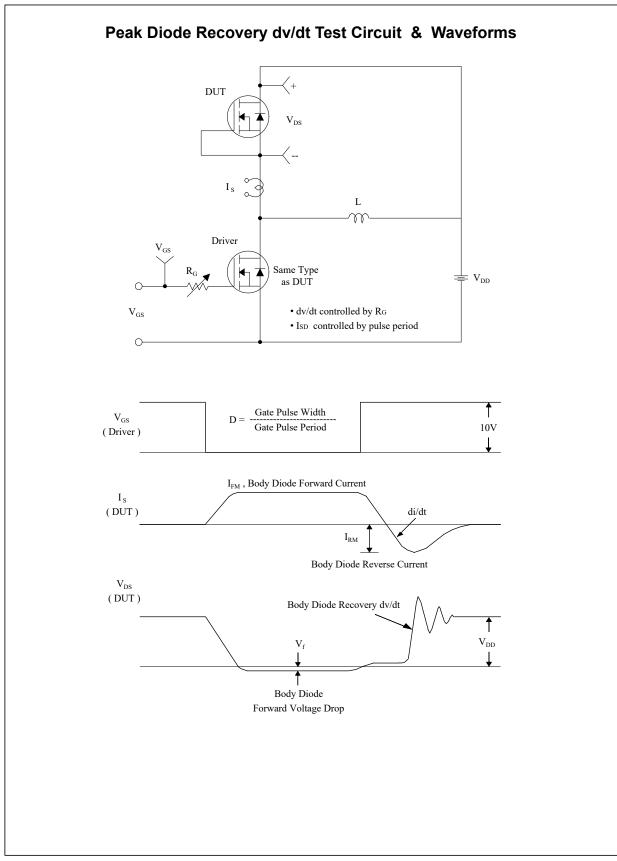
# TO-263

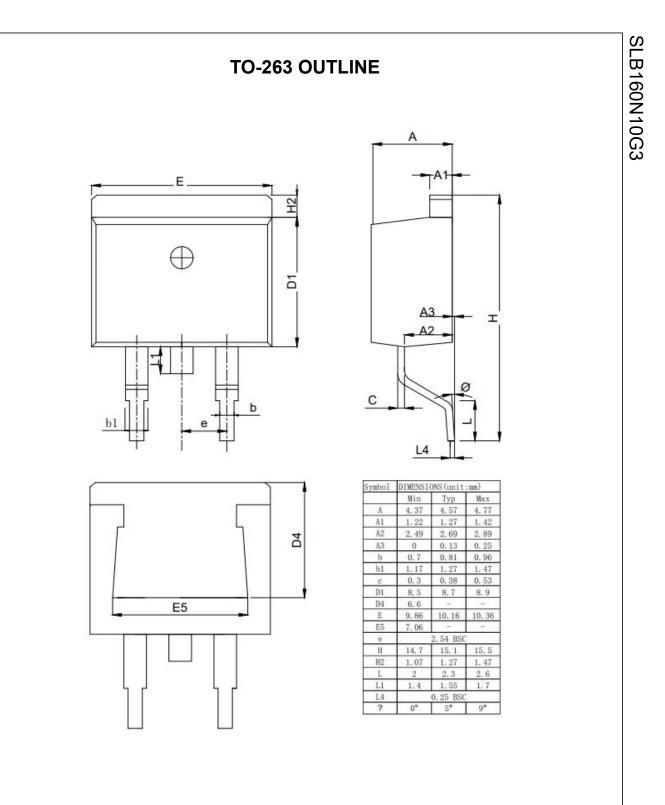



# Absolute Maximum Ratings T<sub>c</sub> = 25°C unless otherwise noted

| Symbol                            | Parameter                                                                     | SLB160N10G3 | Units |  |  |
|-----------------------------------|-------------------------------------------------------------------------------|-------------|-------|--|--|
| V <sub>DSS</sub>                  | Drain-Source Voltage                                                          | 100         | V     |  |  |
| 1                                 | Drain Current - Continuous ( $T_c = 25^{\circ}C$ )                            | 160         | А     |  |  |
| ID                                | - Continuous (T <sub>c</sub> = 100°C)                                         | 102         | А     |  |  |
| I <sub>DM</sub>                   | Drain Current - Pulsed (Note 1)                                               | 480         | А     |  |  |
| V <sub>GSS</sub>                  | Gate-Source Voltage                                                           | ±25         | V     |  |  |
| E <sub>AS</sub>                   | Single Pulsed Avalanche Energy                                                | 1050        | mJ    |  |  |
| Р                                 | Power Dissipation ( $T_c = 25^{\circ}C$ )                                     | 210         | w     |  |  |
| PD                                | Power Dissipation (T <sub>c</sub> = 100°C)                                    | 1.4         | V     |  |  |
| R <sub>ejc</sub>                  | Thermal Resistance, Junction to Case                                          | 0.72        | °C/W  |  |  |
| R <sub>0JA</sub>                  | Thermal Resistance, Junction to ambient                                       | -           | °C/W  |  |  |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Temperature Range                                       | -55 to +150 | °C    |  |  |
| ΤL                                | Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds | 300         | °C    |  |  |


\* Drain current limited by maximum junction temperature.


|                        |                                                                                 | Top Marking           | Pac                                                           | kage                                         | Packing Method                                      | м    | Q    | QTY   |    |
|------------------------|---------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|------|------|-------|----|
|                        |                                                                                 | ТО                    | O-263 Tape & Reel                                             |                                              | 800                                                 |      | 4000 |       |    |
| Elect                  | rical Ch                                                                        | naracteristics        | Т                                                             | -<br><sub>c</sub> = 25°C (                   | unless otherwise noted                              |      |      |       |    |
| Symbol                 | mbol Parameter                                                                  |                       | Test Conditions                                               |                                              | Min                                                 | Тур  | Мах  | Units |    |
| Off Ch                 | aracteris                                                                       | tics                  |                                                               |                                              |                                                     |      |      | -     |    |
| BV <sub>DSS</sub>      | Drain-Source Breakdown Voltage                                                  |                       |                                                               | $V_{GS} = 0$                                 | V, I <sub>D</sub> = 250 uA                          | 100  |      |       | V  |
| I <sub>DSS</sub>       |                                                                                 | Voltage Drain Current |                                                               |                                              | 00 V, V <sub>GS</sub> = 0 V                         |      |      | 1.0   | uA |
| IGSSF                  | Gate-Body Leakage Current, Forward                                              |                       |                                                               |                                              | 5V, V <sub>DS</sub> = 0 V                           |      |      | 100   | nA |
| IGSSR                  | Gate-Body Leakage Current, Reverse                                              |                       |                                                               |                                              | 25V, V <sub>DS</sub> = 0 V                          |      |      | -100  | nA |
| On Ch                  | aracterist                                                                      | ics                   |                                                               | •                                            |                                                     | -    |      | -     | I  |
| $V_{\text{GS(th)}}$    | Gate Threshold Voltage                                                          |                       |                                                               | $V_{DS}$ = $V_{GS}$ , $I_D$ = 250 uA         |                                                     | 2.0  | -    | 4.5   | V  |
| R <sub>DS(on)</sub>    | Static Drain-Source<br>On-Resistance                                            |                       |                                                               | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 40A |                                                     |      | 3.7  | 4.2   | mΩ |
| Dynam                  | ic Chara                                                                        | cteristics            |                                                               |                                              |                                                     |      | 4    |       |    |
| Ciss                   | Input Capacitance<br>Output Capacitance                                         |                       | V <sub>DS</sub> = 25 V, V <sub>GS</sub> = 0 V,<br>f = 1.0 MHz |                                              |                                                     | 6100 | -    | pF    |    |
| Coss                   |                                                                                 |                       |                                                               |                                              |                                                     | 730  | -    | pF    |    |
| Crss                   | Reverse T                                                                       | ransfer Capacitance   |                                                               | 1 1.01                                       |                                                     |      | 35   | -     | pF |
| Switch                 | ing Char                                                                        | acteristics           |                                                               |                                              |                                                     |      |      |       |    |
| t <sub>d(on)</sub>     | Turn-On D                                                                       | Delay Time            |                                                               |                                              |                                                     |      | 19   |       | ns |
| tr                     | Turn-On Rise Time                                                               |                       | V <sub>GS</sub> = 10 V, V <sub>DS</sub> =50V,                 |                                              |                                                     | 76   |      | ns    |    |
| t <sub>d(off)</sub>    | Turn-Off D                                                                      |                       |                                                               |                                              | R <sub>L</sub> = 4.7Ω ,,I <sub>D</sub> =40A Tj=25°C |      | 48   |       | ns |
| t <sub>f</sub>         | Turn-Off F                                                                      | all Time              |                                                               |                                              |                                                     |      | 14   |       | ns |
| Qg                     | Total Gate                                                                      | e Charge              |                                                               | V <sub>DS</sub> = 5                          | 0 V, I <sub>D</sub> =40A,                           |      | 92   |       | nC |
| $Q_{gs}$               | Gate-Sour                                                                       | rce Charge            |                                                               | $V_{GS} = 10V$                               |                                                     |      | 35.2 |       | nC |
| $Q_{gd}$               | Gate-Drai                                                                       | n Charge              |                                                               |                                              |                                                     |      | 18.8 |       | nC |
| Drain-                 | Source D                                                                        | iode Characterist     | ics ar                                                        | nd Max                                       | imum Ratings                                        |      |      |       |    |
| ls                     | Maximum Continuous Drain-Source Diode Forward Current                           |                       |                                                               |                                              |                                                     |      |      | 160   | Α  |
| Ism                    | Maximum Pulsed Drain-Source Diode Forward Current                               |                       |                                                               |                                              |                                                     |      |      | 480   | Α  |
|                        | Drain to Source Diode Forward Voltage, $V_{GS}$ = 0V, $I_{SD}$ =40A, T J = 25°C |                       |                                                               |                                              |                                                     |      | -    | 1.2   | V  |
| $V_{SD}$               | Reverse recovery time,I F =160A DI F /dt=100A/µs                                |                       |                                                               |                                              |                                                     |      | 63   |       | ns |
| V <sub>SD</sub><br>Trr | Reverse r                                                                       |                       | Reverse recovery charge, I F =160A DI F /dt=100A/µs           |                                              |                                                     |      |      |       |    |


- 2. EAS condition: T J =25°C, V DD =50V, V<sub>G</sub> =10V, L=0.5mH, 3. Pulse Test: Pulse Width≤300µs, Duty Cycle≤0.5%



N- Channel Typical Characteristics (Continued) 2.5 1.3 V<sub>DS</sub> Drain-Source Voltage (V) R<sub>DS(ON)</sub> (mΩ) Drain-Source On Resistance  $V_{gs} = 10V$ ID=60 A 2.0 1.2 1.5 1.1 1.0 1.0 0.9 0.5 0.8 0.0 25 50 75 100 125 150 -50 -25 -50 -25 25 50 75 100 125 150 175 0 T J , Junction Temperature [℃] Figure 7. V<sub>DS</sub> Drain-Source Voltage T J , Junction Temperature [℃] Figure 8. On-Resistance Figure 7. vs Gate Voltage vs Gate Voltage 10<sup>3</sup> 180 160 10<sup>2</sup> **Ip - Drain Current (A)** 140 I D - Drain Current (A) 120 101 100 10<sup>0</sup> 10-1 0 25 50 75 100 125 150 175 0 10<sup>-2</sup> T J -Junction Temperature(°C) 10 100 10 10<sup>2</sup> 10<sup>3</sup> Figure 9. Maximum Safe Operating Area Figure 10. Maximum Continuous Drain **Current vs Case Temperature** 10<sup>1</sup> r(t),Normalized Effective Transient Thermal Impedance 10º Note: Duty factor D=t1 Peak =PDM\*Zthjc 10-2 10-5 10-4 10-3 10-2 10-1 10° Square Wave Pluse Duration(sec) Figure 11. Transient Thermal Response Curve







#### NOTE:

1The plastic package is not marked as smooth surfaceRa=0.1;Subglossy surfaceRa=0.8 2.Undeclared tolerance  $\pm$  0.25,Unmarked filletRmax=0.25

## Disclaimer

The content specified herein is for the purpose of introducing Msemitek's products (here in after "Products"). The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Msemitek does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of the Products or technical information described in this document.

The products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). Msemitek shall bear no responsibility in any way for use of any of the Products for the above special purposes.

Although, Msemitek endeavors to improve the quality and reliability of it's products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Msemitek's product.

The content specified herein is subject to change for improvement without notice. When using a Msemitek's product, be sure to obtain the latest specifications.

## Disclaimer

The content specified herein is for the purpose of introducing Msemitek's products (here in after "Products"). The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Msemitek does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of the Products or technical information described in this document.

The products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). Msemitek shall bear no responsibility in any way for use of any of the Products for the above special purposes.

Although, Msemitek endeavors to improve the quality and reliability of it's products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Msemitek's product.

The content specified herein is subject to change for improvement without notice. When using a Msemitek's product, be sure to obtain the latest specifications.